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Teleportation of a two-particle four-component squeezed
vacuum state by linear optical elements
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We present a linear optical scheme for achieving a unity fidelity teleportation of a two-particle four-
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Quantum entanglement plays an essentially central role
in accomplishing current tasks of quantum information
processing[1−4]. One of the important exhibitions of
entangled states is quantum teleportation[5], which is
a process that a sender wants to transfer an unknown
state to a remote receiver via a priorly shared entangled
state with the assistance of some classical information.
In the past few years, teleportation has attracted a large
number of attention due to its remarkable applications
in quantum communication and quantum computation.
In experiment, the earlier implementations of teleporta-
tion have mainly focused on the discrete-variable states
described by a Hilbert space of finite dimension, such
as the superposed photon polarization state in optical
systems[6,7] or the superposition of atomic internal states
in trapped ions[8]. Furthermore, discrete-variable tele-
portation has been generalized to the cases of continuous-
variable corresponding to quantum states of a system
with an infinite-dimensional state space[9−11]. Based on
the theoretical protocol of Ref. [9], experimental telepor-
tation of a single coherent mode of a radiation field has
been demonstrated with a two-mode squeezed vacuum
state[10,11].

Recently, Enk et al. proposed a novel linear optical
scheme for teleporting a coherent superposition state by
using an entangled coherent state[12]. Wang presented
how to teleport an entangled coherent state with only lin-
ear optical devices[13]. Subsequently, optical schemes for
the teleportation of a single-mode superposed coherent
state or of an entangled coherent state have been widely
investigated[14−18]. Cai et al. described a proposal to
teleport a superposition state of two equal-amplitude and
opposite-phase squeezed vacuum states (SVSs) through
an entangled SVS[19]. This scheme was then extended to
teleport a two-mode two-component entangled SVS[20].
Following the ideas of Refs. [21,22], in this letter, we
present an optical scheme to teleport a bipartite four-
component SVS with a unity fidelity using only linear
optical devices like beam splitters and photon detectors,
and two entangled SVSs are utilized as the quantum
channel.

Suppose that an unknown two-particle arbitrary SVS
that a sender Alice wants to transmit to a receiver Bob
is in the following form

|φ〉12 =
1√
N12

(x1 |ξ〉1 |ξ〉2 + x2 |ξ〉1 |−ξ〉2
+x3 |−ξ〉1 |ξ〉2 + x4 |−ξ〉1 |−ξ〉2), (1)

where x1, x2, x3, and x4 are unknown complex numbers,
|ξ〉 and |−ξ〉 are two single-mode SVSs, ξ = reiθ is a com-
plex number with squeezing amplitude r and squeezing
angle θ. Generally, on the basis of Fock state, |ξ〉 can be
expanded as

|ξ〉 =
√

sechr
∞∑

m=0

√
(2m)!
m!2m

(−eiθtanhr)m |2m〉 . (2)

The normalization factor N12 of the state |φ〉12 is de-
scribed by

N12 = (|x1|2 + |x2|2 + |x3|2 + |x4|2
+2xξRe[x∗1x3 + x∗2x4 + x∗1x2 + x∗3x4]

+2x2
ξRe[x∗1x4 + x∗2x3]), (3)

with xξ = 〈ξ |−ξ〉 =
√

sech(2r). To achieve the telepor-
tation, we also suppose that Alice and Bob previously
share the quantum channel consisting of the following
two entangled SVSs:

|φ〉34 =
1√
M

(|ξ〉3 |ξ〉4 − |−ξ〉3 |−ξ〉4) , (4)

|φ〉56 =
1√
M

(|ξ〉5 |ξ〉6 − |−ξ〉5 |−ξ〉6) , (5)

where M = 2
[
1 − x2

ξ

]
. Note that the quantum states

|φ〉34 and |φ〉56 are both maximally entangled states with
the amount of entanglement being exactly one ebit. At
the beginning of the teleportation process, the initial
state of the whole system including the modes 1, 2, 3,
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Fig. 1. Schematic illustration of teleporting a bipartite four-
component SVS, where BS1 and BS2 denote 50/50 beam split-
ters, D1, D2, D3, and D4 denote photon detectors, and U1 and
U2 denote unitary operation.

4, 5, and 6 is given by |ψ〉 = |φ〉12 ⊗ |φ〉34 ⊗ |φ〉56, where
modes 1, 2, 3, and 5 belong to Alice while modes 4 and 6
belong to Bob. The schematic diagram for teleportation
is depicted in Fig. 1. From the figure, one can see that
six modes of light, two beam splitters and four photon
detectors are needed to achieve our teleportation scheme.

Now, Alice lets modes 1, 3 and modes 2, 5 at her side
enter the input ports of the lossless 50/50 beam split-
ters BS1 and BS2, respectively. The 50/50 beam split-
ter is described by Ajk = eiπ(a+

j ak+a+
k aj)/4, here a+

l and
al (l = j, k) are the bosonic creation and annihilation
operators for the two light beams entering the two input
ports of the beam splitter. B+

l and Bl are assumed to
denote the bosonic creation and annihilation operators
leaving the two output ports of the beam splitter. Then
we can get the following input-output relations between
aj , ak and Bj , Bk:

Bj =
1√
2
(aj + iak), Bk =

1√
2
(ak + iaj). (6)

A straightforward calculation yields that the input state
|ψ〉in = Sj(ξj)Sk(ξk) |00〉jk through the beam splitter

can be transformed into

|ψ〉out = exp[
1
4
(ξk − ξj)B+2

j

+
1
4
(ξ∗j − ξ∗k)B2

j +
1
4
(ξj − ξk)B+2

k

+
1
4
(ξ∗k − ξ∗j )B2

k − i
2
(ξj + ξk)B+

j B
+
k

− i
2
(ξ∗j + ξ∗k)BjBk] |00〉jk , (7)

where Sl(ξl) = exp(− ξl

2 a
+2
l + ξ∗

l

2 a
2
l ) denotes the single-

mode squeezing operator for mode l (l = j, k) with the
parameter ξl = rleiθl .

For the sake of convenience, we describe the following
two specific cases of beam-splitter transformation which
are useful for the implementation of our teleportation
scheme. Case 1: if the two input light beams have the
equal squeezing amplitudes and the equal phases, i.e.,
rj = rk = r, θj = θk = θ, then Eq. (??) can be rewritten
as

|ψ〉out = exp[−ir(eiθB+
j B

+
k + e−iθBjBk)] |00〉jk . (8)

Case 2: if the two input light beams have the equal
squeezing amplitudes but the opposite phases, i.e., rj =
rk = r, θk − θj = π, the output state leaving the
beam splitter becomes a superposition of two single-mode
squeezed vacuum states:

|ψ〉out= exp[−1
2
r(eiθB+2

j − e−iθB2
j )]

×exp[
1
2
r(eiθB+2

k − e−iθB2
k)] |00〉jk . (9)

According to Eqs. (8) and (9), after modes 1, 3 and
modes 2, 5 pass through the beam splitters BS1 and
BS2, respectively, the initial state |ψ〉 of the total sys-
tem evolves to

∣∣∣ψ′〉
out
=

1
M

√
N12

[x1S13(iξ)S25(iξ) |00〉13 |00〉25 |ξ〉4 |ξ〉6 + x2S13(iξ)S2(−ξ)S5(ξ) |00〉13 |0〉2 |0〉5 |ξ〉4 |ξ〉6
+x3S1(−ξ)S3(ξ)S25(iξ) |0〉1 |0〉3 |00〉25 |ξ〉4 |ξ〉6 + x4S1(−ξ)S3(ξ)S2(−ξ)S5(ξ) |0〉1 |0〉3 |0〉2 |0〉5 |ξ〉4 |ξ〉6
−x1S1(ξ)S3(−ξ)S25(iξ) |0〉1 |0〉3 |00〉25 |−ξ〉4 |ξ〉6 − x2S1(ξ)S3(−ξ)S2(−ξ)S5(ξ) |0〉1 |0〉3 |0〉2 |0〉5 |−ξ〉4 |ξ〉6
−x3S13(−iξ)S25(iξ) |00〉13 |00〉25 |−ξ〉4 |ξ〉6 − x4S13(−iξ)S2(−ξ)S5(ξ) |00〉13 |0〉2 |0〉5 |−ξ〉4 |ξ〉6
−x1S13(iξ)S2(ξ)S5(−ξ) |00〉13 |0〉2 |0〉5 |ξ〉4 |−ξ〉6 − x2S13(iξ)S25(−iξ) |00〉13 |00〉25 |ξ〉4 |−ξ〉6
−x3S1(−ξ)S3(ξ)S2(ξ)S5(−ξ) |0〉1 |0〉3 |0〉2 |0〉5 |ξ〉4 |−ξ〉6 − x4S1(−ξ)S3(ξ)S25(−iξ) |0〉1 |0〉3 |00〉25 |ξ〉4 |−ξ〉6
+x1S1(ξ)S3(−ξ)S2(ξ)S5(−ξ) |0〉1 |0〉3 |0〉2 |0〉5 |−ξ〉4 |−ξ〉6 + x2S1(ξ)S3(−ξ)S25(−iξ) |0〉1 |0〉3 |00〉25 |−ξ〉4 |−ξ〉6
+x3S13(−iξ)S2(ξ)S5(−ξ) |00〉13 |0〉2 |0〉5 |−ξ〉4 |−ξ〉6 + x4S13(−iξ)S25(−iξ) |00〉13 |00〉25 |−ξ〉4 |−ξ〉6], (10)

here Sjk(ξ) = exp(−ξB+
j B

+
k + ξ∗BjBk) is a two-mode

squeezed operator (j, k = 1, 3 or 2, 5). Then Al-
ice performs photon number measurement on the four
modes 1, 3, 2 and 5 with the four detectors D2, D1,
D3, and D4, respectively. From Eq. (??), we find that
the term Sj(−ξ)Sk(ξ) |0〉j |0〉k or Sj(ξ)Sk(−ξ) |0〉j |0〉k
stands for two single-mode squeezed states only includ-
ing even-number photon states in their number-state

expansions, the term Sjk(iξ) |00〉jk or Sjk(−iξ) |00〉jk

denotes a two-mode SVS which contains the same pho-
ton numbers in each mode j and k with the photon
numbers having both odd and even numbers in their
number-state expansions. When each result of the mea-
surement made by the four detectors is odd number of
photons at the same time, the state

∣∣∣ψ′
〉

out
collapses into
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∣∣∣ψ′〉
46
=

−1
M

√
N12

sech2r(eiθtanhr)2(2m+1)

(x1 |ξ〉4 |ξ〉6 + x2 |ξ〉4 |−ξ〉6 + x3 |−ξ〉4 |ξ〉6
+x4 |−ξ〉4 |−ξ〉6). (11)

Clearly, the above state of modes 4 and 6 is exactly the
same as the initial state |φ〉12. In this case, Bob needs
to do nothing and the teleportation works perfectly with
a unity fidelity. The probability of detecting odd pho-
ton numbers simultaneously by the four detectors can be
obtained as

P (2m+ 1) =
1
M2

sech4r(tanhr)4(2m+1), (12)

which does not depend on the superposition coefficients
of the state to be teleported. Summing up all the mea-
surement outcomes of odd photon numbers, we can derive
the probability of successful teleportation as

P =
∞∑

m=0

P (2m+ 1) =
cosh(2r)

16(sinh4r + cosh4r)
. (13)

It is easy to find that the success probability P only de-
pends on the squeezing amplitude r. For the other cases
when any one of the four detectors obtains even number
photons, the teleportation scheme cannot succeed due to
the fact that it is impossible to reconstruct the initial
state |φ〉12 from the corresponding collapsed states of
modes 4 and 6.

In summary, we have proposed a scheme to teleport
a two-particle four-component SVS using linear optical
elements such as beam splitters and photon detectors
with the help of classical information. To accomplish our
teleportation scheme, the consumed quantum resource is
a pair of entangled SVSs, and the photon detectors are
required to have the ability to distinguish the odd and
even photon numbers, which is relatively difficult to re-
alize especially when the photon number becomes large,
but in principle, it can be done. One possible method is
that odd and even photon numbers in the Fock state |n〉
can be discriminated by coupling the cavity field with
a two-level atom through dispersive interaction[13,23,24].
Compared with the initial state only including two com-
ponents of {|ξ〉 |ξ〉, |−ξ〉 |−ξ〉} in Ref. [20], the state
to be teleported in our scheme is a more general state,
i.e., a bipartite four-component SVS. Besides, no matter
whether the two-particle pure SVS to be teleported is
entangled or not, our teleportation scheme can always
be probabilistically realized with unity fidelity. Thus our
scheme may be helpful to understand the applications of

SVS for quantum information processing.
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